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FINITE ELEMENT ANALYSIS OF CUT-GROWTH IN
SHEETS OF HIGHLY ELASTIC MATERIALS

NENG-MING WANG

Research Laboratories, General Motors Corporation, Warren, Michigan 48090, U.S.A.

Abstraet-The Rivlin-Thomas criterion for the tearing of rubber vulcanizates is discussed in terms of Rice's path­
independent J integral. It is shown that the R-T criterion can be stated in an alternative form where the growth
of a cut is governed by this integral. The J criterion is then used to predict the critical load that causes a cut
to grow in the uniaxial stretching of nicked rubber vulcanizate strips. Calculation of the J integral is accom·
plished with the use of a finite element procedure for highly elastic materials. It is shown that the predicted critical
loads agree fairly closely with existing experimental data.

1. INTRODUCTION

IT HAS been shown by Rivlin and Thomas [1] that the tearing of rubber vulcanizate is
governed by a Griffith-type energy criterion; namely, that a cut in a rubber sheet will
spread if the rate of decrease of elastic energy stored in the sheet with respect to the size
of the cut reaches a critical energy characteristic of the material. The criterion has been
employed in subsequent investigations [2-5] to determine the effect of the shape of the cut,
of the temperature, and of the dynamic cut-growth rate on the energy characteristic and,
more recently, in studies of fatigue properties of rubbers [6-8]. In structural analysis
applications, however, the Rivlin-Thomas criterion has seldom been utilized, for example,
in predicting the rupture load of rubber-like materials with existing flaws, One major
difficulty has been the computation of the stress and strain distributions in a solid body
which undergoes a finite deformation. Moreover, if the existing flaws are of the crack kind,
the strain concentration near the tip of the crack causes further difficulty. The objective
of this paper is to explore the usefulness of the finite element method in predicting the
critical load that causes the growth of a cut in highly elastic materials. Much of the work
is motivated by recent advances made in finite element procedures for problems of finite
elastic deformation (e.g. Oden [9]), and by the recent application of the Rice integral [10]
in elasto-plastic crack analyses (Broberg [11] and Andersson [12]).

The content of this paper may be summarized as follows: In Section 2 we give a dis­
cussion of the relationship between the Rivlin-Thomas criterion and the Rice integral. It
is shown that the critical energy characteristic of Rivlin and Thomas can be used to define
a critical value of the Rice integral. This leads to an alternative criterion for the tearing
of rubbers in terms of the Rice integral. In Section 3, an analysis is made of the uniaxial
stretching of several nicked rubber vulcanizate strips, using a finite element procedure for
highly elastic materials. The finite element procedure is discussed in detail in Appendix A.
Calculations are made to determine the relationship between the load and the Rice integral
for several lengths of cut. From these calculations and from the known energy character­
istics of these vulcanizates, the critical load that causes a cut to grow is predicted as a
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function of the cut length. In Section 4, we compare the calculated critical loads with
experimental data of Rivlin and Thomas [1 J, and find good agreement between calculation
and experiment.

2. THE RIVLIN-THOMAS CRITERION AND THE RICE INTEGRAL

The criterion of Rivlin and Thomas [IJ for the growth of a cut in rubber sheets is
expressed by the following equation:

- (o:v) = 1;h, (2.1)
oc I

where W denotes the elastic energy stored in the sheet, c is the cut length measured off
in the undeformed state. h is the undeformed thickness of the sheet, and 1; is the critical
energy characteristic of the material. The suffix I denotes that the differentiation is carried
out under conditions of constant displacement of the part of the boundary which is not
traction free. Thus, the quantity (OWjOC)1 is equivalent to the rate of change of the potential
energy P with respect to the cut length, or dPjdc. To determine 1;, Rivlin and Thomas
have used a "simple extension" tear test piece and a "pure shear" test piece (shown in
Fig. 1). For both types of test pieces, analytical formulae have been derived for the quantity
-(OW/OC)l in terms of overall force and deformation variables (equations (6.8) and (6.10)
in [IJ).

We now proceed to discuss the relationship between the Rice integral [10] and the
Rivlin-Thomas criterion. For a homogeneous body containing a traction-free cut subject

Undeformecl test piece
(0)

Deformed test piece

Undeformed test piece Deformed test piece

(b)

FIG. 1. (a) "Simple extension" tear test piece, and (b) "Pure shear" tear test piece.
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to a two-dimensional infinitesimal deformation field, the Rice integral is defined by

J = t [Wdxl-T. ::1 dS} (2.2)

where W denotes the strain energy density, T and u denote the traction and displacement
vectors, respectively. The integral assumes the same value for all paths r surrounding the
tip of the cut (see Fig. 2). For finite deformation, the Rice integral J may still be written in

IIj

FIG. 2. Notation for defining the Rice int.egral.

the form of (2.2) provided that W represents the strain energy density per unit initial
(undeformed) volume, T is the nominal traction vector, Xl and Xl are the initial cartesian
coordinates, and ds is the differential arc length along r, defined in the undeformed
geometry. To prove this, we need only to show that the integral so defined is path in­
dependent. Without loss of generality, we assume the body to be a sheet of initial thick­
ness h, and express the Rice integral J by

J = ht [Wdx2 -tijvi :;{ d~, (i,j = 1,2), (2.3)

where t ij are contravariant components of stress vectors, resolved with respect to the
initial base vectors of (Xl, Xl) and measured per unit area of the undeformed geometry,
Vi denote the outward normal of r, and Ui are displacement components with respect to
Xi. The strain energy density W (per unit initial volume) is defined by

(2.4)

where sij are contravariant components of the Kirchhoff stress (measured per unit area
of the undeformed geometry) on convected coordinates initially coincide with (Xl, Xl), and
t: ij are finite strain tensors defined by

t: .. = l.l (u . .+u· .+Uk.Uk .). (2.5)
2) 1,) ),1 ,1.)



1214 NENG-MING WANG

(2,8

Here, we ha~e used the convention that a comma preceding an index denotes partia
differentiation. The stresses t ii are related to sij by

t ij = Sik(<5fc + U~k) (2.6

(see p. 6 of [13]). Substituting (2.5) and (2.6) in (2.4) gives an alternative form for W:

W = fi'i tijd(uj,J (2.7

With the use of equation (2.7) and the equilibrium equations t~{ = 0 for finite deformation
it can easily be verified that the integral (2.3) is path independent.

It has been shown by Rice [14J that for elastic materials, linear or nonlinear, the Rici
integral J is identical to - dPIde, the rate of potential energy decrease with respect to thl
cut size. Rice distinguished two types of cut-tip configurations, smooth-ended and sharp
ended, and proved the identity

dP
J = - de'

for both configurations. Although Rice's proofs were given in the context of infinitesima
deformation, it can be shown that they are valid also for finite deformation as long as thl
Rice integral J (2.2) is defined in its finite deformation form (e.g. (2.3)). Consequently, thl
identity (2.8) holds for both infinitesimal and finite deformations and for both smooth
ended and sharp-ended tip configurations. Since the quantity (oW/oe), of Rivlin anI
Thomas is actually dP/de, it follows from equation (2.8) that J = -(oW/oe)"

We now discuss specifically the Rice integral (2.3) for both the "simple extension'
tear test piece and the "pure shear" test piece of [IJ. For the simple extension test piece
we evaluate equation (2.3) following the contour r as sketched in Fig. l(a). The on1:
portions of r along which J does not vanish are seen to be those perpendicular to the Cul
The state of deformation there corresponds to a uniform extension A. subject to a force F
if the initial cross-sectional area is hlo, 10 being the total width of the specimen, the firs
term of the Rice integral (2.3) is - Whlo• while the second term gives tI2hlo(OU2/0Xl
which equals to 2F..1.. Comparing this result with equation (6.8) of [1Jconfirms the identit:
J = -(OW/OC)I' For the pure shear test piece, we evaluate equation (2.3) following th,
contour as shown in Fig. l(b). Comparing the resulting expression with (6.10) of [IJ lead
again to the desired identity.

From the above discussions, it is evident that the critical energy characteristic, Tc
determined by Rivlin and Thomas using the two test pieces may be construed such that i
in fact defines a critical value of the Rice integral, Jc (apart from a constant factor h), whicl
can now be used in an alternative criterion for the tearing of rubber sheets expressed il
terms of J. The J criterion may be stated as follows: A cut in a rubber sheet will spread i
the Rice integral J reaches a critical value Jc (= Tch). We conclude this section by notini
that the use of the J integral for crack stability criteria in elasto-plastic fracture mechanic
has been discussed by Broberg [11].

3. UNIAXIAL STRETCHING OF NICKED RUBBER VULCANIZATE STRIPS

In this section we apply the J criterion discussed in the previous section to predic
the critical load that causes a cut to grow in the uniaxial stretching of nicked rubbe
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vulcanizate strips. The geometry of the undeformed strips is of thickness h and of width b
with a cut of length c (see Fig. 3). Three vulcanizates are investigated. The recipes and
material properties of these vulcanizates were given in the Appendix and Table 4 of Ref.
[IJ, as labeled by vulcanizates A, D and E. The rubber vulcanizates are assumed to be
incompressible, and their strain energy function satisfies the Mooney form:

W = Ct[(lt-3)+0:(l2-3)J,

where Ct and 0: are material constants, and It, 12 are strain invariants (see (A. 15) of
Appendix A).

blur 0

I

FIG. 3. Uniaxial stretching or a nicked strip and division into finite elements. Dotted contour indicates
a typical path ror calculating the Rice integral (c/b = 0·2).

In order to evaluate the J integral, it is necessary to calculate the stress and deformation
in the strips as functions of the applied load. This is accomplished with the use of a plane­
stress finite element procedure for highly elastic materials. The finite element procedure
employed in this paper is derived from a variational equation for which the Euler equations
are the equilibrium equations for incremental stresses and displacements. Consequently,
the stiffness equations are ofthe incremental form. The details ofthe procedure are provided
in Appendix A. It should be noted that the derivation of the procedure follows closely the
approach formulated by Hibbitt et ai. [15J for problems of finite strain and large dis­
placement. In [15J the virtual velocity theorem is the basis for the transition from con­
tinuum theorems to finite element discretization, while in the present derivation the time­
derivative version of the virtual velocity theorem is the "crossing over" point. It should
also be noted that finite element procedures for the bulging and stretching.of elastic sheets
have been developed by Oden [9]. Oden's approach is to derive from the minimum
theorem of potential energy a system of nonlinear stiffness equations, and then to obtain
solutions for these equations by means of an appropriate numerical scheme (e.g. the
incremental method or the Newton-Raphson method). Thus, the present procedure as
described in Appendix A may be viewed as an alternative form of Oden's incremental
procedure.
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Using the finite element grid shown in Fig. 3, finite element calculations are made for
the stress and deformation in the strip by gradually incrementing the applied load. The
load is described by the stress a 0 which is the total applied load divided by the undeformed
cross-sectional area of the strip. For a typical incremental step of calculation, the master
stiffness matrix, K, is first formed by assembling the elemental stiffness matrix (A.13). The
resulting matrix equations have the following form:

(3.1)

where dU denotes the vector of all nodal displacement increments, do0 is a pre-assigned
load increment and F is a fixed load-distribution vector, corresponding to the uniaxial
stretching. Equations (3.1) are then solved for dU by a Cholesky factorization technique
[16]. Adding dU to the previously calculated displacements gives the new cumulative
nodal'displacement vector U, which can now be used to calculate the stresses and strains
in the strip. Based on these results, the Rice integral J is then evaluated according to
equation (2.3) by following a contour as shown in Fig. 3. The contour is taken in the same
way as in [12] such that it enters into and exits from an element at the mid-points of two
prescribed sides. In the interior of the element, the contour is a straight line.

To select the load increment, three sizes of (dao/Ct), 0·4, 0·2 and 0·1, were tested for
the case of (X = 0·9 and clb = 0·2. The computed values of J are shown in Fig. 4. It is found
that the J values for dOo/C! = 0·4 and for dao/C! = 0·2 are within 6 per cent of each

a- 0·9
clb -0,2

!:J.uo IC, -0'1
!:J.uolC, -0·2

!:J.u. IC, -0-4

10

5

o

u.le,

FIG. 4. The calculated Rice integral J vs the stress Uo for several sizes of load increment dUo (ex = 0·9,
c/b = 0·2).
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other in the range of (lo/C I < 5. When the J values for !J.(lo/C I = 0·2 are compared with
those for !J.(lo/C1 = 0·1, the differences are reduced to within 3 per cent. From this nu­
merical experiment, it appears that to compute J to an acceptable accuracy the increment
!J.(lo/C1 = 0·2 would be satisfactory and this is used in all the remaining calculations.

The computed values of (JIC1hc) for vulcanizate A for which the material constant
a = 0·9, are plotted in Fig. 5 against (lo/C 1 for several ratios of clb. The results show that,
for a relatively small cut, say clb < 0·2, the curve corresponding to clb = 0·1 may be
adequate for estimating J for a given (lo/C I' Similar results were obtained with vulcan­
izates D (a = 0·74) and E (a = 0·54). In Fig. 6, we have plotted the J values for the three
vulcanizates for clb = 0·1.

4. COMPARISON OF CALCULATED RESULTS WITH EXPERIMENT

Using the critical energy characteristic, 1;, of the vulcanizates A, D and E (given in
Table 4 of [1]) and identifying the corresponding critical value of the Rice integral Je by

Je = 1;h,

we can then calculate from Fig. 6 the critical load, (le' that causes the growth of a cut, as a
function of the cut length c. These critical loads are plotted in Figs. 7(a-e) for the vulcan­
izates A, D and E, respectively. The experimental data reported by Rivlin and Thomas [1]

15

10

5

o

FIG. 5. The calculated Rice integral J vs the stress qo for ex = ()'9 and for clb = 0·1. 0·2 and 0·25.
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FtGs. 7(b) and (cl. Comparison of the calculated critical stress (1, (referred to the undeformed test piece)
with experimental data for vulcanizate (a) A. (b) D and (c) E.
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have also been plotted in these figures, as represented by circles. It is seen that the cal­
culated results agree fairly closely with the experimental data. It should also be noted
that the cut lengths of the strips investigated by Rivlin and Thomas are small compared
to the width of the strip. In all but three cases, the ratio. c/b is less than 0·2.
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APPENDIX A

A plane-stress finite element procedure
Consider a flat sheet whose material coordinates are (Xl, x 2 ) of a plane cartesian

coordinate system. The sheet occupies a domain f!) with a boundary of!). Under plane
loadings, the sheet deforms to a new configuration which is completely described by the
displacement Ui (i = 1,2). The variational equation from which we derive our incremental
stiffness is as follows (e.g. see [17J) :

(A.1)
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where a dot over a symbol denotes increment or the rate of change vs "time". (For sim­
plicity, we have assumed that all external loads are prescribed on af2 only). In equation
(A.I), nij are Kirchhoff stress resultant tensors on convected coordinates, F i are the forces
per unit undeformed length along af2 : and

i. = e'+-21(Uk.Uk .+Uk.Uk ·)
1) I) •(oJ •r .J'

e·· = -2
1(U.+ U .).'J '.J J,'

(A.2)

(A.3)

Let f2 be divided into triangular elements, and let the approximating functions over each
element be linear in Xl and x 2

, We then have, for.a typical element,

and

e==

t== [
i.ll]
~22 = (H + cpB)il,

2e12

(A.4)

(A.5)

where the vector il represents the usual 6-dimensional, nodal displacement increments.
The matrices H, Band cp are defined in terms of the initial nodal coordinates (xI' Yl' x2,
Y2' X3' Y3) and the current spatial derivatives of displacements as follows:

(Y2 -Y3) 0 (Y3 - Yl) 0 (Yl - Y2) 0

I -(x2-x3) 0 -(x3-Xl) 0 -(Xl -X2) 0
B=-

Ii 0 (Y2 - YJ) 0 (YJ - Yl) 0 (Yl - Y2)

0 -(X2 -x3) 0 -(x3-xd 0 -(Xl -X2)

[~
0 0 :lB,H= 0 0

I

and

au
0

av
0

ax ax

0
ou

0
ov

cp=
oy oy

ou au at, ot'
oy ox ay ox

where !i = XI(Y2 - Y3)+X2(Y3 - YI)+X3(YI - Y2)' Here, we have temporarily used the
notation (x, y) == (Xl, x2

) and (u, v) == (up u2 ). The subscripts refer to the nodes of the
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element. By denoting nT = (n ll
, n22

, nl2
) and defining

nll nl2 0 0

nl2 n22 0 0
N= (A.6)

0 0 nl1 n 12

0 0 nl2 n22

the elemental equilibrium equations can be derived from equation (A.I) to give

A{(H+cpBfil+(BTNB)Ii} = f, (A.7)

where A is the undeformed elemental area, and f is the vector of nodal force increments
corresponding to Ii. Equations (A.7) are valid whether the material is elastic or inelastic,
compressible or incompressible.

We now assume that the material of the sheet is incompressible and that there exists
a strain energy function W such that the Kirchhoff stresses sij satisfy

(A.8)(i, j = 1,2)... I(OW OW)Sl) - __+_
- 2 oeij oe ji '

(It should be noted that for three-dimensional incompressible solids, Expression (A.8)
usually contains an additional term representing the hydrostatic pressure. However,
under the present two-dimensional plane stress assumption, each individual component
of eij (i, j = 1,2) can vary independently and, hence, equation (A.8) is a valid expression.)

. By definition, the Kirchhoff stress resultants are simply

(A.9)

where h is the undeformed thickness of the sheet. The increments of n
ij can be obtained

by differentiating (A.9) to give

/iij = h~[~(OW + OW)Jekl (A.IO)
oekl 2 oeij oeji ..

In matrix notation, equation. (A.IO) can be written as
il = Qt, (A.II)

where Q is a 3 x 3 matrix. Substituting (A.H) into (A.7) and making use of (A.S) gives the
elemental stiffness matrix equations:

(A. 12)
where

Ke = A{(H +cpBfQ(H +cpB)+ BTNB}.

Let the strain energy function of the material be of the Mooney form, i.e.,

(A.I3)

(A.IS)

W = C1[(l1 -3)+a(l2 -3)], (A.14)

where C1 and IX are material constants and 11 , 12 are strain invariants, defined in terms
of the deformed metric tensors, Gij' Gij and G( = det(Gij)) by

11 = I/G+G ll +G22 ,

12 = G+ Gll +G22
.
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The covariant metric tensors Gij are calculated according fo Gij = 6jj + lEij, where eij

are given by equation (2.6). The contravariant tensors Gij satisfy GikGkj = 6~. For Mooney
materials, the stress-strain relations (A.8) become

S11 = 2C1{(1-PG11)+a[p+(~-PJl)GllJ},

S22 = 2C I {(1-PG22)+IX[P+(~-PJl)G22J}, (A.16)

S12 = 2C1{_PG12+1X(~_PJl)G12},

where Jl = Gil + G22 and p = I/G. It follows from equations (A.9) and (A.lO) that the
matrix Q in equation (A.ll) can now be expressed as

Q = C1[A I +IXA 2],

where

and

[

8G 11 (JlG 11
- P)

A 2 = h

Symmetrical

4[G11G22+(G12)2]

8(G 22 )2

4[1 +2Jl(G12 )2]

8G22(JlG 22 _ P)

4G
12

(2JlG
l1

-P) ]

4G12(2JlG 22 _ P) .

2[J1P +4Jl(G12)2 -1]

(A.l7)

(A.18)

(Received 13 September 1972; revised 16 February 1973)

A6c:TpaKT-06cYlKllaeTCII KplHepHK PHBnHHa-ToMaca llnll 'lalla'lH pa'lpblBaHHII BynKaHH3aTOB H pe3HHbl,
B BK,Ile KHTerpana PaKca, He'laBIICHMoro OT TpaeKTopHII. )l.oKa3b1BaeTCII 'ITO KpHTepHA PHBnHHa-ToMaca
MOlKHO cPopMynHpoBaTb B anbTepHaTHBHoi! cPOpMC, B KOTopoA POCT cpe3a onpe,llenlleTClI C nOMOlllblO
nora HHTerpana. 3aTeM, HCnOJlb3yeTclI KpMTepMH PaAca ,IlJlII npe,llCKa3aHHII KpMTH'leCKOH Harpy3KH.
KOTOpallllBJllleTClI nplf'fHHOil pOCTa cpC3a, ,IlJlII cny'lall O,llHOOCIIOro paCTlIlKeHMII nOJlOC C 3apy6KoA, H3rOTO­
BneHHblX M3 pe3MHHblX BYJlKaHM3aTOB. C nOMOlllblO MeTO,lla KOHe'lHOrO 3JleMeHTa ,IlJ111 'lpe3BM'IaHHO ynpyrHx
MaTepHanOB, BbmOJlHlIeTCII paC'ICT MHTerpaJla PaAca. YKa3aHO 'ITO npe,llCKa3aHHble KpHTH'lecKHe HarpY3KII
COrJlaCOBblBaIOTClI coaepweHHO 6nM3KO c 3KcnepMMeHTanbHbiMli )laHHbIMIi.


